OUTLINE

Model EC5900R are digital programmer/controller offering flexible control by storing programs of 400 steps (maximum 100 steps per pattern) and maximum 19 patterns.
Sufficient comments displayed in the display of 16 character \times 4-line at the center of unit allows easy-to-operate and highly functions. The graphic indication of a program pattern makes you keep directly tracking the progress of a process.

FEATURES

- Human friendly display and operability
- LCD (wide temperature range product) display of 16-character and 4-line
- Graphic display of program pattern
- Superb operability by comments display
- Simultaneous display of process variable, setpoint, residual time and other related data
■ It is lineup about one channel type and two channel types
1 channel-type basic model : EC5900R
2 channel-type basic model : EC5950R
- The program function of fullness
- The mass program of a maximum of 400 steps and 19 patterns
- DO : A maximum of 15 points, DI : A maximum of 12 points
- Time Units : Enables to switch time unit (minute/second) of programs
- It is easy edit about a program pattern by deletion/insertion function of a step, and deletion/copy function of a pattern
\square High accuracy : \pm ($0.1 \%+1$ digit) Multi-Input (Thermocouple, RTD, Voltage or Current), Multi-Output (Current, SSR drive, Relay)
■ Anti-overshoot control
- Multi-PID, Programmed PID, Multi-output limit, Programmed output limit
- Easy replace from EC5600S/EC5900A (They are following and terminal-arrangements community about a function and operability)

SPECIFICATIONS

- Programs

Number of programs: 1 (1program-2controls) or
(EC5950R) 2 (2programs-2controls : 2ch independent control)

Number of patterns :
Max 19 EC5900R
Max 38 (19×2programs) … EC5950R
Number of steps: Max 400 (Max 100/ pattern)
Setting method: X-Y type by settings of time and target setpoint
Setting range:
Setpoint; Whole input range width
Time setting; Oh00min to 399h59min or Oh00min00s to 5 h 59 min 59 s (switching type)
Repeat range: Maximum 999 repeats
PV start: Enabled
Link between patterns: Enabled
Guaranteed soak: Enabled
Pattern selection: Keys, DI or external communication
Operation: RUN/STOP, ADVANCE and RESET
7-segment LED display: PV, pattern No. and step No.
LED lamps: ALM, OUT, COMM, MAN, RUN
LCD display: SP, TIME, OUT, graphic pattern
display, Comment display, data
display

- Input

Points: 1 ….... EC5900R
2….... EC5950R
Range: Multi-range system (limited in a range groupe) Refer to the range table.
Resolution: Five columns: $0.1^{\circ} \mathrm{C}$
(Part of the range; $0.01^{\circ} \mathrm{C}$)
Four columns: $1^{\circ} \mathrm{C}$
Accuracy rating: \pm ($0.1 \%+1$ digit)
However, TC input does not include reference-junction compensation error. (Refer to Range and Accuracy Table)
Input polygonal line approximation:

$$
\mathrm{mV}, \mathrm{~V}, \mathrm{~mA} \text { input (10 polygonal lines) }
$$

Burn out: TC/ mV input Upscale
Sensor correction: Applicable to TC/RTD input

$$
0.0 \sim \pm 100.0^{\circ} \mathrm{C}
$$

Input filter: First-order lag filter $0 \sim 20$ seconds or moving average $1 \sim 8$ times
Scaling: a) With setting range limiter for ranges of TC/RTD
b) Rages of $\mathrm{mV} / \mathrm{mA}$; Scaling enabled Four columns: -1999~1999 Five columns: -19999~19999
Signal source resistance:
$\mathrm{TC} / \mathrm{mV}$ Input; Effect of about $0.13 \mu \mathrm{~V} / \Omega$
RTD; Lead wire resistance 5Ω or less
Input resistance: V Input Approx.500k Ω
Current Input Approx.250
CMRR: 140 dB or more
NMRR: 60 dB or more

Range and Accuracy Table

INPUT	CODE	ACCURACY		REMARKS
B	B *1		*1	0~400 ${ }^{\circ} \mathrm{C}$: $\pm 4 \%$
R	R1 *2			$400 \sim 800^{\circ} \mathrm{C}: \pm(0.15 \%+1$ digit $)$
R	R2 *2			
S	S *2		*2	$0 \sim 200^{\circ} \mathrm{C}: \pm$ (0.15\%+1digit)
K	K1			
K	K2			
K	K3	$\pm(0.1 \%+1$ digit $)$		
E	E	$\pm(0.15 \%+1$ digit $)$		
J	J1	$\pm(0.15 \%+1$ digit		
J	J2	within -200 to		
T	T *3	$0^{\circ} \mathrm{C}$	*3	$-270 \sim-200^{\circ} \mathrm{C}: \pm(1 \%+1$ digit $)$
Wre_{5-26}	C			
N	N			
PL II	PL2			
U	U			
L	L		*4	0~20K $: \pm$ ($0.5 \%+1$ digit $)$
$\begin{aligned} & \mathrm{Au}-\mathrm{Fe} \\ & \mathrm{PR}_{40-20} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { AUFE *4 } \\ \text { PR42 *5 } \end{array}$	$\pm(0.2 \%+1$ digit $)$	*5	$20 \sim 50 \mathrm{~K}: \pm(0.3 \%+1$ digit $)$ $0 \sim 300^{\circ} \mathrm{C}: \pm(1.5 \%+1$ digit $)$
$\begin{aligned} & \text { Pt100 } \\ & \text { JPt100 } \end{aligned}$	Pt0			$300 \sim 800^{\circ} \mathrm{C}: \pm(0.8 \%+1$ digit $)$
	JPt0	\pm (0.1\%+1digit)		
	Pt1	$\pm(0.1 \%+1 \mathrm{digit})$		
	JPt1			
	$\begin{aligned} & \hline \mathrm{Pt} 2 \\ & \mathrm{JPt} 2 \end{aligned}$	$\pm(0.15 \%+1$ digit $)$		
reference-junction compensation error : $\pm 1^{\circ} \mathrm{C}\left(15 \sim 35^{\circ} \mathrm{C}\right)$				
$\pm 1.5^{\circ} \mathrm{C}\left(0 \sim 15^{\circ} \mathrm{C}, 35 \sim 55^{\circ} \mathrm{C}\right)$				
$\pm 2^{\circ} \mathrm{C}\left(-10 \sim 0^{\circ} \mathrm{C}\right)$				

- Control

Control computation cycle: 0.1 second
Control mode: PID control, PD control, ON-OFF control, 3-positon control (Dual output only)
PID: Switching system of single PID/multi-PID/programmed PID
Single PID \qquad It always uses same PID
Multi-PID Selection of 1 set from 8 sets of PID parameters on a step basis
Programmed PID Proportional computation system by 3 reference points
Control constants:
Proportional band(P); 0.1 ~ 999.9\%
Integral(reset) time(I); $0.01 \sim 99.99$ minutes
Derivative(rate) time(D); $0.00 \sim 20.00$ minutes
Manual reset(b);
(Available when the control mode is set to PD control) $0.0 \sim 100.0 \%$
D.BAND (Dead band coefficient); \pm ($0 \sim 0.500$) (available only with dual output)
HYSTERESIS (Hysteresis band in 2-position or 3-position control); 0.00 ~ 20.00\%

Output limit:
Switching system of single output limit/multi-output limit/programmed output limit
Note; 2nd output always uses same output limit.
Single output limit $\cdots \cdots$. It always uses same output limit
Multi-output limit $\cdots \cdots .$. Selection of 1 set from 8 sets for each Hi and Lo on a step basis
Programmed output limit \cdots...Proportional computation system by 3 reference points
Auto/Manual: Switching of bump-less and balance-less
Direct/reverse action:
Setting up by front keys (dual output type: reverse action fixed)
Cycle time: 1 ~ 120 seconds
(When the output is set to the relay output or the SSR drive output)
CONT•STOP (C•STOP):
When the control action is stopped, a preset value is output.
Preset output:
$0.0 \sim 100.0 \%$ (Within an output limit, ON or OFF is selectable.)
C-STOP, when the power interruption for about 50 ms or more is recovered, the action shown in the list below is taken.

Preset output ON/OFF	C•STOP	When the power interruption for about 50ms or more is recovered
ON	Preset output value	Preset output value AUTO \rightarrow MAN
OFF	Preset output value	Output low-limiter value

Auto-tuning: Available
Anti-overshoot: ON/OFF

- Types of control output
a) 1st output (multi-output): Current, SSR drive, Relay
- Current output; $4 \sim 20 \mathrm{mADC}$ (Max. 600 $)$
$0 \sim 5 m A D C$ (Max. 2k Ω) \cdots option
- SSR drive output; ON...... 15VDC (Max. 20mA) OFF… OVDC
- Relay contact output;

Form-a contact 250VAC 3A (resistive load)
b) 2nd output: Optional combinations from the current output, the SSR drive and the relay contact Ratings are same as a).
c) Servo drive output(option):

Power source for control equipments;

$$
24 ~ 100 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}
$$

Output; SSR 1AAC Max.
For single-phase capacitor motor
Feedback resistance; $100 \sim 2.5 \mathrm{k} \Omega$
Free auto-calibration type
Deadband; 0.5 ~ 10.0\% adjustable

- Alarms

Types: PV alarm; (High limit, Low limit)
SP alarm; (High limit, Low limit)
Deviation alarm; (High limit, Low limit)
Deviation absolute value
Heater monitoring alarm (option)

Setting range: PV alarm \cdots. Whole input range SP alarm \cdots Whole input range Deviation alarm
High limit; 0 ~ input range width
Low limit; input range width ~ 0 Deviation absolute value alarm....

0 ~ input range width
Alarm output hysteresis width:
Enables to set 0 to input range width
Pause function:
The pause function enabled or disabled is selectable.
Not available in SP alarm

- Contact output (DO)

Number of outputs: Max. 5 points (2 points; standard, 2 points; option, 1 point; When the relay is not used for the control output, it is possible to specify it.)
It is one side commonness excluding the control output.
Alarm output: Refer to the alarm shown above.
Status outputs:
AUTO/MAN status (ON when the status is MAN)
RUN/STOP status (ON when the status is RUN)
FAIL alarm (ON when the CPU is abnormal)
CONT•STOP (ON when the control action is STOP)
END (ON when the program is END)
DO
Timing DO (1~999 seconds)
Form-1a contact $\times 4$
(common to COM terminal (The control output relay is excluded.))
(Max. 5 outputs from the alarm types and the status output shown above are selectable.)
Contact rating: 250VAC 1A (resistive load)

- Contact input (DI)

Signal assignment:
ON signal $\cdot \cdots \cdots$.....when the input circuit is closed
OFF signal $\cdots \cdots$....when the input circuit is open
Number of inputs: 4 points
Input condition: 15VDC 1mA to drive a photo-coupler
Types: RUN/STOP (Program RUN (STOP) when the signal is
ON (OFF))
ADV (The running step No. is advanced each time when the signal is turned ON)
RST (The running step No. is set to 00 each time when the signal is turned ON)
AUTO/MAN (MAN (AUTO) when the signal is ON (OFF))
CONT•STOP (CONT•STOP (CONT•RUN) when the signal is ON (OFF))
PTN SELECT (ON: enabled)
CONDITION (ON: step progressing condition)

Display
DI/DO (Configurable by key entry)

Terminals	DO	DI	Remarks
A	Note1	Note3	Standard
B			
C			
D			
E		-	
1	Note2	Note3	Option (when using DI/DO expansion adapter or DI/DO connector)
2			
3			
4			
5			
6			
7			
8			
9			Option(when using DI/DO connector)
a			

Note 1: Selection from ALM, RUN, END, MAN, DO, Timing DO, FAIL and CONT•STOP
Note 2: Selection from RUN, END, MAN, DO, Timing DO, and CONT•STOP
Note 3: Selection from RUN, ADV, RST, COND, MAN, CONT•STOP and PTN•SELECT
When DI and DO are used in a program, up to 4 contacts for each of DI and DO can be used in one step.
Types: 7-segment LED
PV (green) 5 digit
Pattern No. (orange) 2-digit
Step No. (orange) 2-digit
LED lamp [RUN (green), MAN (orange), OUT
(orange) , ALM (red), COMM (green),
1 CH (green), 2CH (green)]
LCD..... 16-character $\times 4$-line (Backlight: green)
Operation screen $1 \cdots \cdots$ Current setpoint (SP)
Target setpoint (SP)
Step residual time
1st output value Graphic pattern display (left side)
Operation screen $2 \cdots \cdots$ 2nd output value (available with dual output) Status display
Display update: 0.2 seconds
Auto restoration:
If no key is pressed within 2 minutes, the display will automatically return to the operation screen.

- Common specifications

All reset: Enabled
Key lock: Enabled
Memory backup: Non-volatile memory (Fe-RAM)
Front panel: Dust-proof and Drip-proof front panel conforming to IP65.
Polyester sheet
Key switch with click
Failsafe: When the instrument becomes abnormal, the output will change to 0% or a preset value by a watch-dog timer and various self-diagnosis functions. FAIL output enabled (when the CPU is abnormal or when a self-diagnosis function is abnormal)

Operating temperature range: $-10 \sim 55^{\circ} \mathrm{C}$
Power supply: Voltage rating at 100 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Mass: Approx. 500g
Power consumption: 30VA Max.
Attachments: Mounting brackets, instruction manual

- Safety and EMC standards
(The agreement evaluation is done.)
Electrical safety: IEC61010-1
Emissions: EN61326-1
Immunity: EN61326-1

- Option

Analog retransmission:
$0 \sim 20 \mathrm{mADC}$ or $4 \sim 20 \mathrm{mADC}$ for a setting scale is selectable.
Process variable (PV), setpoint (SP), or output value (OUT), is selectable.
Accuracy rating; $\pm 0.1 \%$
Resolution; 0.05% or less
Load resistance; Max. 600Ω (current output)
Communication function: RS-232C, RS-422A, RS-485
(Communication modules and communication cables are sold separately. RS-485 has the type with built-in the main body.)

Extension I/F (ARCNET ${ }^{\circledR}$):
LAN for extended functions
Token-bus N : N communication
Transmission speed 2.5 Mbps
20 nodes/ network
255 nodes max (using HUB)
Application ….. Heater monitoring function - Connection to EC5500R or EC5800R

* $\mathrm{ARCNET}{ }^{\circledR}$ is a registered trademark of Datapoint Corporation, USA.
Sensor power: 24VDC 24mA Max.
DI/DO connector:
DI; 8 points Contact input
DO; 10 points Open collector output
($30 \mathrm{VDC}, 2 \mathrm{~mA}$)
DI/DO connector cable;
WMSU0243A* 01:1m, 02: 5 m , sold separately
DI/DO expansion adapter (CA2005A02; sold separately):
DI; 7 points Contact input
DO; 8 points Form-1a 250VAC 1A (resistive load)
Power supply; 100V/110VAC or 200V/230VAC
ower consumption; Approx. 3VA/ 100VAC
Mass; Approx. 1.9kg

PART NAMES AND FUNCTION

Types of operation screens

Display examples of operation screens

Note1: Designating 1st output, 2nd output and servo drive

Output type	1st output	2nd output
Single output multi	8	0
Single output 0-5 mA	6	0
Dual output	One of 1, 2,5 and 6	One of 1, 2, 5 and 6
Servo drive	8	0

Note 2: When select 8 by the 1st output and do not use the relay output, point of contact output appointment becomes 5 points with 3 points, " 1 " with " 0 ".
Note 3: For the voltage output, use an external resistance HMSU3081A02 ($250 \Omega \pm 0.1 \%$)
Note 4 . Designating extension option

Control method	Extension option
EC $590 * R$	$0,1,2,3,4$
EC $595 * R$	$0,5,6,7,8$

RANGE TABLE

Input	Range code	Input range	
		5 columns	4 columns
TC (Thermocouple) input			
B	B	$0.0 \sim 1820.0^{\circ} \mathrm{C}$	$0 \sim 1820^{\circ} \mathrm{C}$
R	R1	$0.0 \sim 1760.0^{\circ} \mathrm{C}$	$0 \sim 1760^{\circ} \mathrm{C}$
R	R2	$0.0 \sim 1200.0^{\circ} \mathrm{C}$	$0 \sim 1200^{\circ} \mathrm{C}$
S	S	$0.0 \sim 1760.0^{\circ} \mathrm{C}$	0~1760 ${ }^{\circ} \mathrm{C}$
K	K1	$-200.0 \sim 1370.0^{\circ} \mathrm{C}$	$-200 \sim 1370^{\circ} \mathrm{C}$
K	K2	$0.0 \sim 600.0^{\circ} \mathrm{C}$	$0 \sim 600^{\circ} \mathrm{C}$
K	K3	$-200.0 \sim 300.0^{\circ} \mathrm{C}$	$-200 \sim 300^{\circ} \mathrm{C}$
E	E	$-200.0 \sim 700.0^{\circ} \mathrm{C}$	$-200 \sim 700^{\circ} \mathrm{C}$
J	J1	$-200.0 \sim 900.0^{\circ} \mathrm{C}$	$-200 \sim 900^{\circ} \mathrm{C}$
J	J2	$-200.0 \sim 400.0^{\circ} \mathrm{C}$	$-200 \sim 400^{\circ} \mathrm{C}$
T	T	$-270.0 \sim 400.0^{\circ} \mathrm{C}$	$-270 \sim 400^{\circ} \mathrm{C}$
WRe5-26	C	$0.0 \sim 2320^{\circ} \mathrm{C}$	$0 \sim 2320^{\circ} \mathrm{C}$
N	N	$0.0 \sim 1300.0^{\circ} \mathrm{C}$	$0 \sim 1300^{\circ} \mathrm{C}$
PR40-20	PR42	$0.0 \sim 1880.0^{\circ} \mathrm{C}$	$0 \sim 1880^{\circ} \mathrm{C}$
PLII	PL2	$0.0 \sim 1390.0^{\circ} \mathrm{C}$	$0 \sim 1390^{\circ} \mathrm{C}$
U	U	$-200.0 \sim 400.0^{\circ} \mathrm{C}$	$-200 \sim 400^{\circ} \mathrm{C}$
L	L	$-200.0 \sim 900.0^{\circ} \mathrm{C}$	$-200 \sim 900^{\circ} \mathrm{C}$
$\mathrm{Au}-\mathrm{Fe}$	AUFE	0.0~300.0K	0~300K
DC (Voltage and current) input			
mV	10 mV	$0.0 \sim \pm 10 \mathrm{mV}$	
mV	20 mV	$0.0 \sim 20.0 \mathrm{mV}$	
mV	50 mV	$0.0 \sim 50.0 \mathrm{mV}$	
V	0-1V	$0.0 \sim 1.0 \mathrm{~V}$	
V	1-5V	$1.0 \sim 5.0 \mathrm{~V}$	
V	0-5V	$0.0 \sim 5.0 \mathrm{~V}$	
V	0-10V	$0.0 \sim 10.0 \mathrm{~V}$	
mA	20 mA	$4.0 \sim 20.0 \mathrm{~mA}$	
RTD (Resistance temperature detector) input			
Pt100	Pt0	$-200.0 \sim 850.0^{\circ} \mathrm{C}$	$-200 \sim 850^{\circ} \mathrm{C}$
	Pt1	$-200.0 \sim 300.0^{\circ} \mathrm{C}$	$-200 \sim 300^{\circ} \mathrm{C}$
	Pt2	$-150.00 \sim 150.00^{\circ} \mathrm{C}$	$-150.0 \sim 150.0^{\circ} \mathrm{C}$
JPt100	JPt0	$-200.0 \sim 650.0{ }^{\circ} \mathrm{C}$	$-200 \sim 650^{\circ} \mathrm{C}$
	JPt1	$-200.0 \sim 300.0^{\circ} \mathrm{C}$	$-200 \sim 300^{\circ} \mathrm{C}$
	JPt2	$-150.00 \sim 150.00^{\circ} \mathrm{C}$	$-150.0 \sim 150.0^{\circ} \mathrm{C}$

DEFAULT SETTINGS

Default settin g at the shipment from the factory.

	Function	Initial value
Display/ input	Indication columns	5
	Input range, scale	K1, -200.0~1370.0 ${ }^{\circ} \mathrm{C}$
	PV abnormal high limit value	$1401.4^{\circ} \mathrm{C}$
	PV abnormal low limit value	$-231.4^{\circ} \mathrm{C}$
	Sensor correction	$0.0^{\circ} \mathrm{C}$
	1st order lag filter	0 second
	Number of moving average	8
	RJC	ON
	Key lock	Unlock
Control	Output type	mA
	Direct/reverse action	Reverse action
	Preset output	OFF
	PV start	OFF
Program	PID output limit	Single mode
	Number of patterns	16
	Time setting	H: M
	Link between patterns	OFF
	Guaranteed soak	OFF
	Program end	CONT
Digital input	Dl assignment	A~D: condition input
Digital output	DO assignment	A: Deviation high alarm
		B: Deviation low alarm
		C: Sequence contact
		D: Sequence contact
		E: Sequence contact
Communication	Communication type	Original
	Communication speed	9600 bps
	Address	0

Note: For V and mA input, linear scaling or square root extraction scaling is selectable.

PANEL CUTOUT

TERMINAL CONFIGURATION

1) EC5900R: DI/DO connector, ARCNET, Servo drive, Sensor POW, AO

2) EC5900R: DI/DO terminal adapter, ARCNET, Servo drive, Sensor POW, AO

3) EC5900R: DI/DO connector, RS-485, Sensor POW, AO EC5950R: DI/DO connector, RS-485, Sensor POW, AO

4) EC5900R: DI/DO terminal adapter, RS-485, Sensor POW, AO EC5950R: DI/DO, terminal adapter, RS-485, Sensor POW, AO

PERIPHERAL UNIT

- Communication module

	Type	Module	Remarks			
1	RS-232C	ZE7101A0113	EC5900R			
2	RS-232C	ZE7101A0114	EC5950R			
3	RS-422A/ RS-485	ZE7101B0411	EC5900R	Terminal block type		
		Up to 32 sets can be connected to a HOST.				
4	RS-422A/ RS-485	EC5101B0412		EC5950R		Terminal block type
:---						
Up to 32 sets can be connected to a HOST.						

- Communication cable

For RS-232C: Model : HMSU2255B02 With an exclusive connector for the instrument side, cable length 2 m , D-sub connector (Male) for other side
For RS-422A:Model : WMSU0075A01 (Appoint a cable length)
For RS-485: Model : WMSU0075A02 (Appoint a cable length)

- DI cable

HMSU2695A01 Cable length 1 m
HMSU2695A02 Cable length 5 m

- DI/DO connector cable

WMSU0243A01 Cable length 1 m
WMSU0243A02 Cable length 5 m

- DI/DO expansion adapter (CA2005A02)

Dimensions (Unit: mm)

- Extension option

Heater monitoring unit Model: ZE7201
Note: The extension I/F is required for EC5900R. Use the following cable. HMSU2032A7601 (2 m), CO-SPEV--SB (A) $1 P \times 0.3 S Q$ or equivalent cables

- External resistor

Model: HMSU3081A02
Resistance: $250 \Omega \pm 0.1 \%$

- For RS-485 (Extension option) terminator Model: WMSU0303A01
Resistance: 200Ω

\triangle CAUTION

Do not install this device before consulting instruction manual

Specifications are subject to change without notice.
For further information, a quotation or a demonstration please contact to:

